MAT1033 Review 4

Name	
SHORT ANSWER. Write the word or phrase that best completes each statement or a	answers the question.
Find the square root. Assume that all variables represent positive real numbers.	
$1)\sqrt{\frac{1}{121}}$	1)
$2) - \sqrt{36}$	2)
3) √ -576	3)
Use a calculator to approximate the square root to 3 decimal places. Check to see that $4)\sqrt{82}$	t the approximation is reasonable. 4)
Find the cube root.	
5) $\sqrt[3]{27}$	5)
6) $\sqrt[3]{x^{18}}$	6)
7) $\sqrt[3]{-8 \times 18 \text{y}^{30}}$	7)

Simplify. Assume that all variables represent any real number. 9) $\sqrt{81x^2}$

9)
$$\sqrt{81x^2}$$

8) $-\sqrt[3]{-8x^{12}y^{12}}$

10)
$$\sqrt[3]{x^3}$$

10) _____

11)
$$\sqrt{x^2 + 18x + 81}$$

11) _____

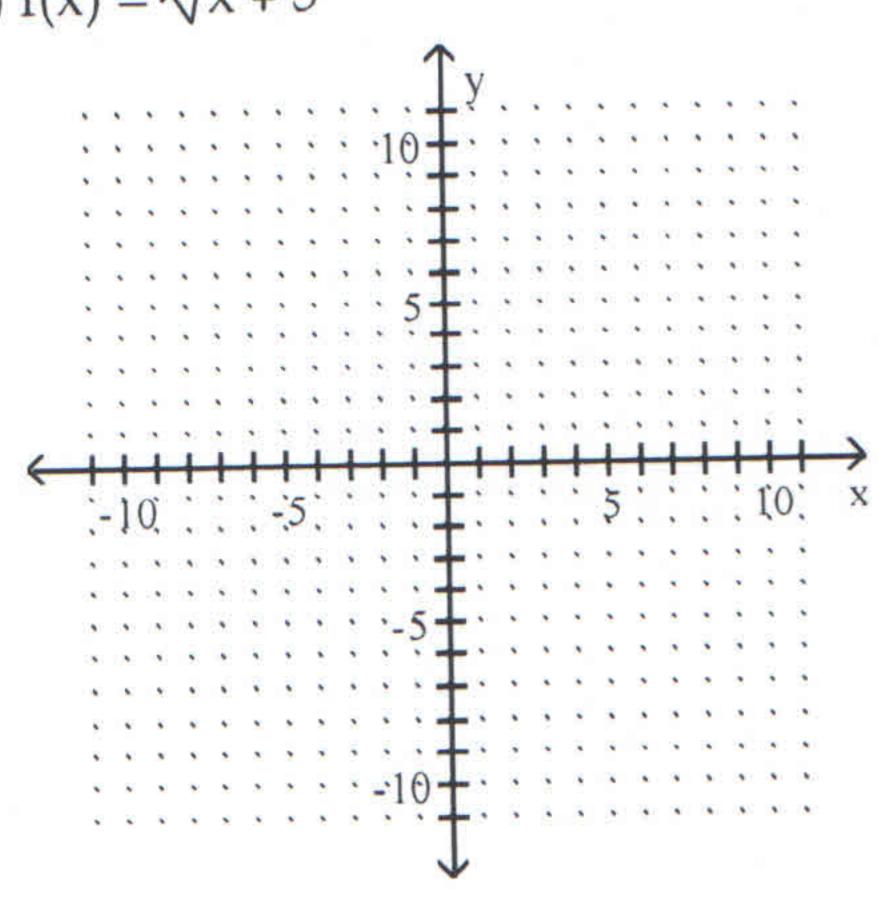
Evaluate.

12) If
$$f(x) = \sqrt{2x + 5}$$
, find the value of $f(1)$.

12) _____

13) If
$$f(x) = \sqrt{2x - 5}$$
, find the value of $f(15)$.

13) _____


14) If
$$f(x) = \sqrt[3]{x + 133}$$
, find the value of $f(-8)$.

14) _____

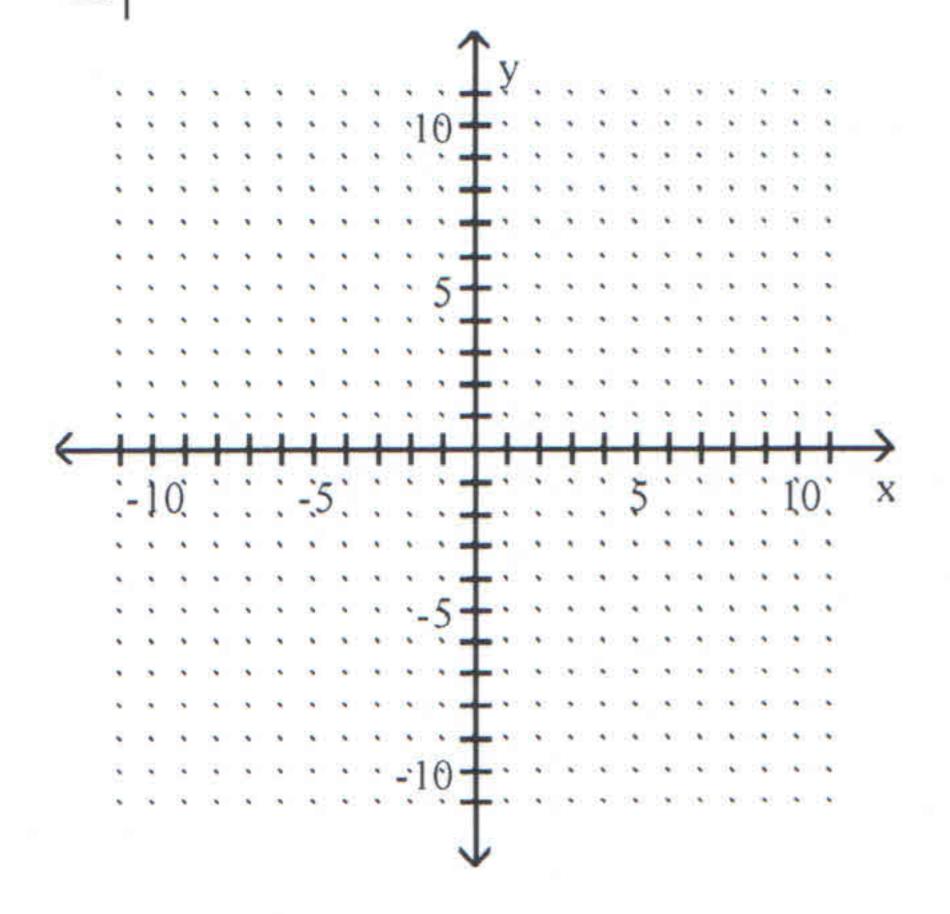
Identify the domain and then graph the function.

15)
$$f(x) = \sqrt{x} + 5$$

15)

16) $f(x) = \sqrt{x - 3}$; use the following table.

TIN	/
X	f(x)
3	
4	
7	



-10 -5 -10 - x

17)

17) $f(x) = \sqrt[3]{x - 5}$; use the following table.

-11	V
х	f(x)
4	
5	
6	
13	

Write with positive exponents. Simplify if possible.

18)

19) 32-4/5

18) $81^{-5/4}$

Use the properties of exponents to simplify the expression. Write with positive exponents.

20)
$$(b^7)^{2/7}$$

21)
$$(-6p^{2/7} + 7p^{3/7})(-6p^{2/7} + 7p^{3/7})$$

$$\frac{x^{-1/3} \cdot x^{3/2}}{x^{-2/7}}$$

Use the product rule to multiply. Assume all variables represent positive real numbers.

$$23)\sqrt{5}\cdot\sqrt{3}$$

24)
$$\sqrt{11} \cdot \sqrt{11}$$

25)
$$\sqrt{18} \cdot \sqrt{32}$$

Use the quotient rule to divide and simplify.

$$26)\sqrt{\frac{128r^2y}{x^4}}$$

Simplify the radical expression. Assume that all variables represent positive real numbers.

$$27)\sqrt{75}$$

28)
$$\sqrt{22}$$

29)
$$\sqrt{200k^7q^8}$$

30)
$$\sqrt[3]{1000}x^4y^5$$

31)
$$\sqrt[5]{32 \times^3 y^{29}}$$

31) _____

32)
$$\sqrt[3]{-64a^{14}b^7}$$

32) _____

$$33) \frac{\sqrt{405x^7}}{\sqrt{5x}}$$

33) _____

$$34) \frac{3}{\sqrt{33}}$$

34) _____

Find the distance between the pair of points.

35)
$$(5, -1)$$
 and $(-7, -6)$

35) _____

36) _____

37) _____

38) _____

39)

0) _____

Find the midpoint of the line segment whose endpoints are given.

1) _____

12)

Add or subtract. Assume all variables represent positive real numbers.

43)
$$8\sqrt{6} - 2\sqrt{24}$$

43) _____

44)
$$4\sqrt{2} + 7\sqrt{50}$$

44) _____

45)
$$\sqrt{36} + \sqrt{500} + \sqrt{4} + \sqrt{45}$$

45) _____

46)
$$\sqrt{49} + \sqrt{108} + \sqrt{100} + \sqrt{192}$$

46) _____

$$47)\sqrt{2}+6\sqrt{128}+3\sqrt{8}$$

47) _____

48)
$$19\sqrt[3]{2} - 4\sqrt[3]{128}$$

48) _____

$$3\sqrt{a} + \sqrt{8a}$$

49) _____

$$\frac{3}{\sqrt{8y}} - \frac{3}{\sqrt{128y}}$$

50) _____

51)
$$7\sqrt[3]{x^3y^7} - 5xy\sqrt[3]{27y^4}$$

51) _____

Solve.

52) Find the perimeter of the triangle. Simplify.

$$\sqrt{32}$$
 m $\sqrt{50}$ m $\sqrt{112}$ m

Multiply, and then simplify if possible. Assume all variables represent positive real numbers.

53)
$$\sqrt{7}(\sqrt{5} + \sqrt{3})$$

53) _____

$$54)\sqrt{5}(\sqrt{245}+\sqrt{35})$$

54) _____

55)
$$\sqrt{2}(\sqrt{98} + \sqrt{14})$$

55) _____

56)
$$(\sqrt{6} + 2)(\sqrt{6} - 2)$$

56) _____

57)
$$(\sqrt{8} + 5)(\sqrt{8} - 5)$$

57) _____

58)
$$(9 + \sqrt[3]{6})(9 - \sqrt[3]{6})$$

58) _____

59)
$$\sqrt{5}(\sqrt{5} + x\sqrt{35})$$

9) _____

60)
$$(11\sqrt{x} + 5)(\sqrt{11x} - 5)$$

50) _____

61)
$$(\sqrt[3]{25} + 5)(\sqrt[3]{5} - 1)$$

51) _____

62)
$$(\sqrt{x-4}+9)^2$$

52) _____

63)
$$(\sqrt{5x-2}-2)^2$$

3) _____

Rationalize the denominator and simplify. Assume that all variables represent positive real numbers.

64)
$$\sqrt{\frac{1}{6}}$$

65) $\sqrt[3]{\frac{7}{9}}$

65) _____

 $\frac{7}{\sqrt{125x}}$

66) _____

 $67)\sqrt{\frac{64}{x}}$

67) _____

 $68) \frac{35}{\sqrt{5x}}$

68) _____

 $69) \frac{6\sqrt{7}}{\sqrt{5}}$

69) _____

70) $\sqrt{\frac{13x}{7y}}$

70) _____

71) $\sqrt[4]{\frac{81}{125}}$

71) _____

72) $\frac{3}{\sqrt{5}-9}$

72) _____

73) $\frac{\sqrt{3} - \sqrt{4}}{\sqrt{3} + \sqrt{4}}$

73) _____

 $74) \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}}$

$$75) \frac{\sqrt{6} - \sqrt{7}}{\sqrt{6} + \sqrt{7}}$$

75) _____

76)
$$\frac{\sqrt{5} - \sqrt{6}}{\sqrt{5} + \sqrt{6}}$$

76) _____

77)
$$\frac{\sqrt{t}}{\sqrt{t} + \sqrt{y}}$$

77) _____

$$78) \frac{7\sqrt{5} + \sqrt{25}}{5\sqrt{5} - \sqrt{25}}$$

78) _____

$$79) \frac{5\sqrt{3} + \sqrt{21}}{5\sqrt{3} - \sqrt{21}}$$

9) _____

Rationalize the numerator and simplify. Assume all variables represent positive real numbers.

80)
$$\frac{7-\sqrt{2}}{6}$$

0) _____

81)
$$\frac{7 + \sqrt{2}}{7 - \sqrt{2}}$$

81) _____

82)
$$\frac{1 - \sqrt{10}}{1 + \sqrt{10}}$$

32) _____

Write in terms of i.

83)
$$\sqrt{-16}$$

33) _____

84)
$$\sqrt{-49}$$

85)
$$\sqrt{-36}$$

85)

Multiply or divide.

86)
$$\frac{\sqrt{-60}}{\sqrt{-10}}$$

87)
$$\frac{\sqrt{-20}}{\sqrt{-2}}$$

88)
$$\frac{\sqrt{-36}}{\sqrt{-3}}$$

Perform the indicated operation. Write the result in the form a + bi.

89)
$$(4 - 4i) + (7 + 7i)$$

90)
$$9i + (-9 - i)$$

91)
$$(4 + 5i) - (-8 + i)$$

92)
$$(7 + 6i) - (-3 + i)$$

95)
$$(8 - 2i) + (-8 + 2i)$$

97) (3i)(-15i)

98) (1 + 2i)(1 - 2i)

98) _____

99) (9 + 3i)(9 - 3i)

99) _____

 $100) \frac{6}{5i}$

100) _____

 $101) \frac{3 + 5i}{7 - 3i}$

[01]

 $102) \frac{8 + 5i}{8 - 5i}$

102) _____

 $103) \frac{1 - 3i}{5 + i}$

103)

Find the power of i.

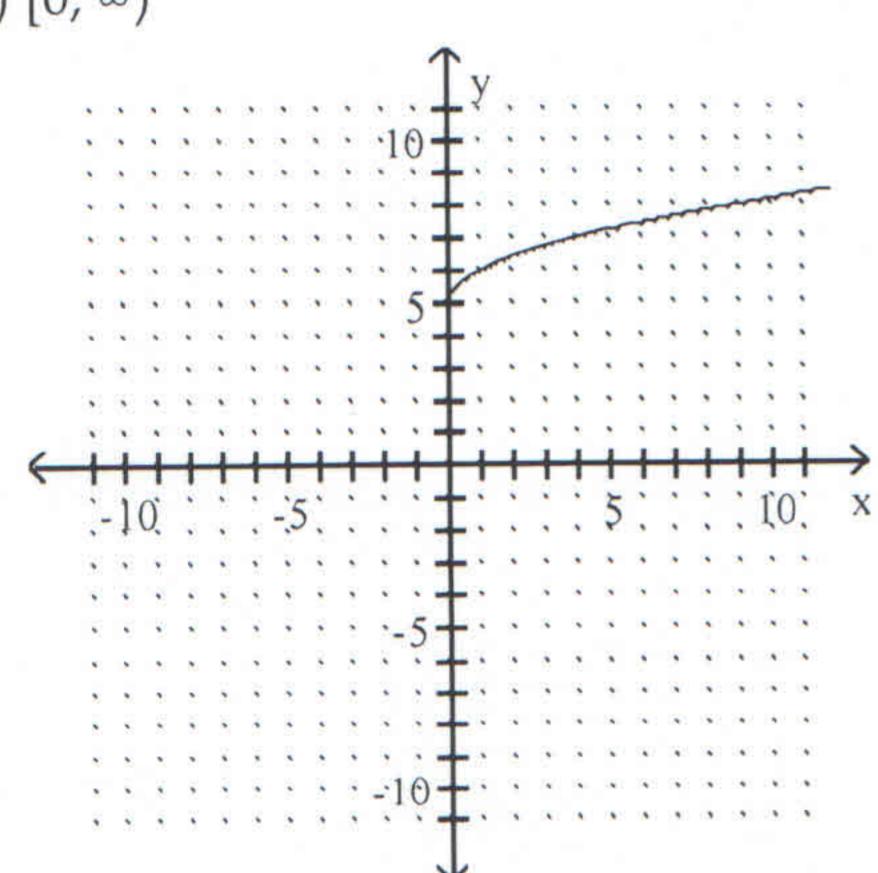
104) i²⁵

104)

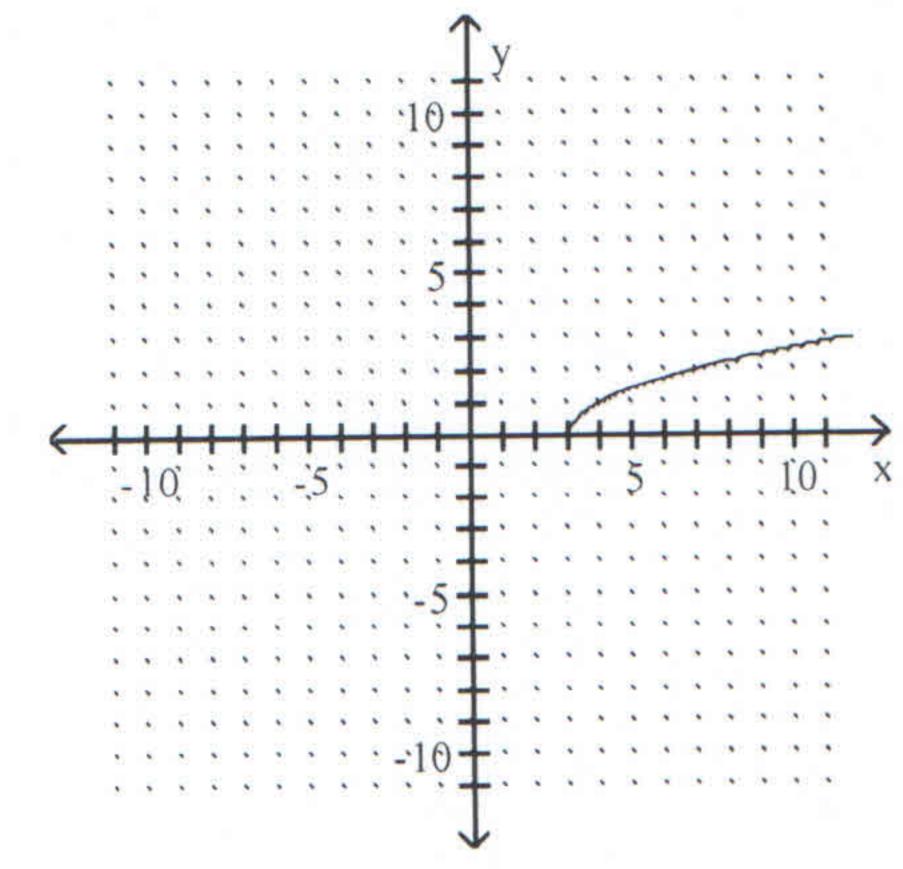
105) i²⁷

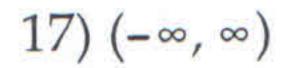
105) _____

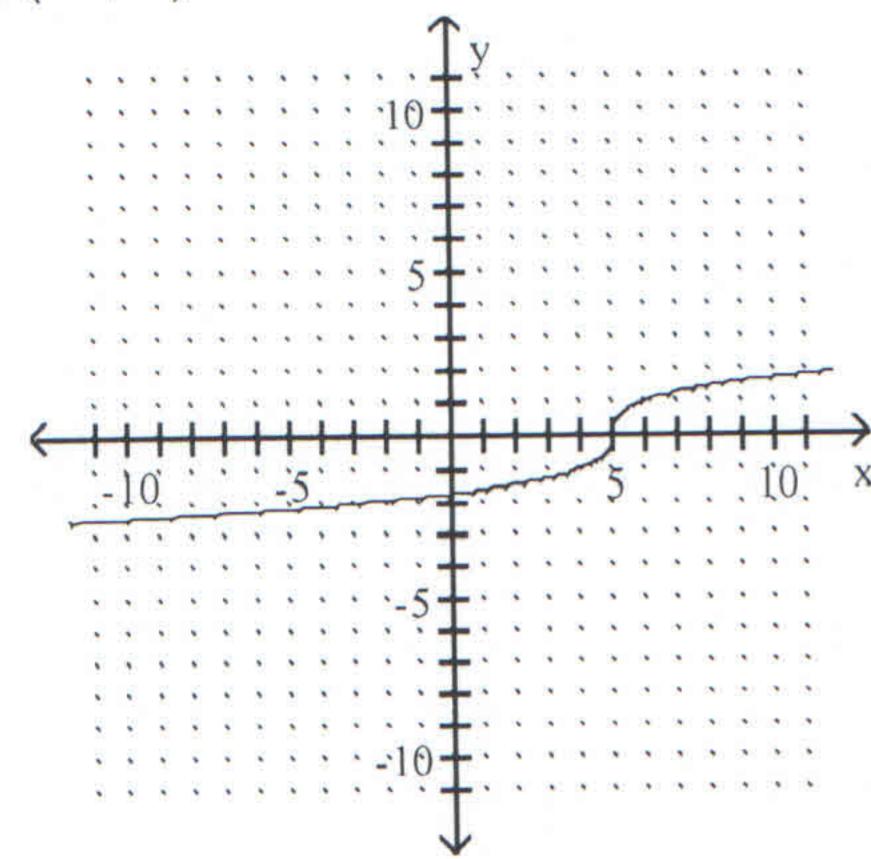
106) i²³


106) _____

107) (4i)⁴


107) _____


108) (3i)⁴


- 1) $\frac{1}{11}$
- 2) -6
- 3) not a real number
- 4) 9.055
- 5) 3
- 6) x^6
- 7) $-2x^6y^{10}$
- 8) $2x^4y^4$
- 9) 9| x |
- 10) >
- 11) | x + 9 |
- 12) $\sqrt{7}$
- 13) 5
- 14) 5
- 15) $[0, \infty)$

16) $[3, \infty)$

18)
$$\frac{1}{243}$$

19)
$$\frac{1}{16}$$

20)
$$b^2$$

21)
$$36p^{4/7} - 84p^{5/7} + 49p^{6/7}$$

23)
$$\sqrt{15}$$

$$26) \frac{8r\sqrt{2y}}{x^2}$$

27)
$$5\sqrt{3}$$
 28) $\sqrt{22}$

28)
$$\sqrt{22}$$

29)
$$10k^3q^4\sqrt{2k}$$

30)
$$10xy \sqrt[3]{xy^2}$$

31)
$$2y^5 \sqrt[5]{x^3} y^4$$

32) $-4a^4b^2 \sqrt[3]{a^2b}$
33) $9x^3$

32)
$$-4a^4b^2 \sqrt[3]{a^2b}$$

$$33) 9x^3$$

$$34) \sqrt[3]{11}$$

$$37)\sqrt{85}$$
 units

38)
$$\sqrt{185}$$
 units 39) $2\sqrt{5}$ units

39)
$$2\sqrt{5}$$
 units

40)
$$2\sqrt{10}$$
 units

$$41)\left(-\frac{3}{2},-1\right)$$

$$42)$$
 $\left(1,\frac{1}{2}\right)$

Testname: MAT1033 - REVIEW 4

- 43) $4\sqrt{6}$
- 44) $39\sqrt{2}$
- 45) $13\sqrt{5} + 8$
- 46) $14\sqrt{3} + 17$
- 47) $55\sqrt{2}$
- 48) $3\sqrt[3]{2}$
- 49) $5\sqrt{a}$
- 50) $2\sqrt{y} 4\sqrt{2y}$
- 51) $-8 \times y^2 \sqrt[3]{y}$ 52) $(9\sqrt{2} + 4\sqrt{7})$ meters
- 53) $\sqrt{35} + \sqrt{21}$
- 54) 35 + $5\sqrt{7}$
- 55) $14 + 2\sqrt{7}$
- 56) 2
- 57) 17
- 58) $81 \sqrt{36}$ 59) $5 + 5x\sqrt{7}$
- 60) $11x\sqrt{11} 55\sqrt{x} + 5\sqrt{11x} 25$
- 61) $5\sqrt[3]{5} \sqrt[3]{25}$ 62) $x + 18\sqrt{x 4} + 77$ 63) $5x 4\sqrt{5x 2} + 2$

- $66) \frac{7\sqrt{5x}}{25x}$
- $67) \frac{8\sqrt{x}}{x}$
- $68) \frac{7\sqrt{5x}}{x}$
- 69) $\frac{6\sqrt{35}}{5}$

- $71) \frac{3\sqrt[4]{5}}{5}$ $72) \frac{3\sqrt{5} + 27}{76}$ $73) 2\sqrt{12} 7$

Answer Key

Testname: MAT1033 - REVIEW 4

74)
$$2\sqrt{6} - 5$$

74)
$$2\sqrt{6} - 5$$

75) $2\sqrt{42} - 13$

76)
$$2\sqrt{30} - 11$$

76)
$$2\sqrt{30} - 11$$
77) $\frac{t - \sqrt{ty}}{t - y}$

$$78) \frac{10 + 3\sqrt{5}}{5}$$

$$79) \frac{16 + 5\sqrt{7}}{9}$$

79)
$$\frac{16 + 5\sqrt{7}}{9}$$

80)
$$\frac{47}{42 + 6\sqrt{2}}$$

81)
$$\frac{47}{51 - 14\sqrt{2}}$$

82)
$$\frac{-9}{11 + 2\sqrt{10}}$$

- 83) 4i
- 84) 7i
- 85) 6i
- 86) $\sqrt{6}$
- 87) $\sqrt{10}$
- 88) $2\sqrt{3}$
- 89) 11 + 3i
- 90) -9 + 8i
- 91) 12 + 4i
- 92) 10 + 5i93) - 15 + 2i
- 94) 10 2i
- 95) 0
- 96) 42
- 97) 45
- 98) 5
- 99) 90

100)
$$-\frac{6}{5}i$$

$$101) \frac{3}{29} + \frac{22}{29}i$$

$$102) \frac{39}{89} + \frac{80}{89}i$$

$$103) \frac{1}{13} - \frac{8}{13}i$$

- 104) i
- 105) -i
- 106) -i
- 107) 256
- 108) 81